Не секрет, что большинство растаманов отдают предпочтение сортам каннабиса с высокой концентрацией тетрагидроканнабинола. По признанию продавца одного известного кофешопа, люди приходят в его лавку не за медицинской коноплей, а чтобы подобрать мощный стрейн и накуриться как Боб Марли. Беззаботные е внесли некоторые коррективы в работу селекционеров. Теперь при выведении новых сортов бридеры делали акцент на высокую концентрацию ТГК, постепенно снижая показатель КБД. На самом деле, их стремление получить максимальный психоактивный или терапевтический эффект оборачивается ничем иным как дизориентацией и обманутыми ожиданиями.
So if your dataset has more centered object that trick will improve your mAP. Anchor boxes decrease mAP slightly from In many problem domains, the boundary boxes have strong patterns. For example, in the autonomous driving, the 2 most common boundary boxes will be cars and pedestrians at different distances. To identify the top-K boundary boxes that have the best coverage for the training data, we run K-means clustering on the training data to locate the centroids of the top-K clusters.
Since we are dealing with boundary boxes rather than points, we cannot use the regular spatial distance to measure datapoint distances. No surprise, we use IoU. On the left, we plot the average IoU between the anchors and the ground truth boxes using different numbers of clusters anchors. As the number of anchors increases, the accuracy improvement plateaus. For the best return, YOLO settles down with 5 anchors. In both cases, we have more thin and tall anchors indicating that real-life boundary boxes are not arbitrary.
We make predictions on the offsets to the anchors. Nevertheless, if it is unconstrained, our guesses will be randomized again. YOLO predicts 5 parameters tx, ty, tw, th, and to and applies the sigma function to constraint its possible offset range.
Here is the visualization. The blue box below is the predicted boundary box and the dotted rectangle is the anchor. Convolution layers decrease the spatial dimension gradually. As the corresponding resolution decreases, it is harder to detect small objects. Other object detectors like SSD locate objects from different layers of feature maps.
So each layer specializes at a different scale. YOLO adopts a different approach called passthrough. After removing the fully connected layers, YOLO can take images of different sizes. If the width and height are doubled, we are just making 4x output grid cells and therefore 4x predictions. Since the YOLO network downsamples the input by 32, we just need to make sure the width and height is a multiple of For every 10 batches, YOLOv2 randomly selects another image size to train the model.
This acts as data augmentation and forces the network to predict well for different input image dimension and scale. In additional, we can use lower resolution images for object detection at the cost of accuracy. This can be a good tradeoff for speed on low GPU power devices.
At high-resolution YOLO achieves VGG16 requires We can further simplify the backbone CNN used. Darknet requires 5. It also uses global average pooling to make predictions. Here is the detail network description:. YOLO is trained with the ImageNet class classification dataset in epochs: using stochastic gradient descent with a starting learning rate of 0.
After the training, the classifier achieves a top-1 accuracy of Then the fully connected layers and the last convolution layer is removed for a detector. YOLO trains the network for epochs with a starting learning rate of 10 -3 , dividing it by 10 at 60 and 90 epochs. YOLO uses a weight decay of 0. Datasets for object detection have far fewer class categories than those for classification. It trains the end-to-end network with the object detection samples while backpropagates the classification loss from the classification samples to train the classifier path.
The children form an is-a relationship with its parent like biplane is a plane. But the merged labels are now not mutually exclusive. Instead of predicting labels in a flat structure, we create the corresponding WordTree which has leave nodes for the original labels and nodes for their parent classes. Originally, YOLO predicts the class score for the biplane. But with the WordTree, it now predicts the score for the biplane given it is an airplane. One benefit of the hierarchy classification is that when YOLO cannot distinguish the type of airplane, it gives a high score to the airplane instead of forcing it into one of the sub-categories.
When YOLO sees a classification image, it only backpropagates classification loss to train the classifier. YOLO finds the bounding box that predicts the highest probability for that class and it computes the classification loss as well as those from the parents. If an object is labeled as a biplane, it is also considered to be labeled as airplane, air, vehicle… This encourages the model to extract features common to them.
So even we have never trained a specific class of objects for object detection, we can still make such predictions by generalizing predictions from related objects. In object detection, we set Pr physical object equals to the box confidence score which measures whether the box has an object. YOLO traverses down the tree, taking the highest confidence path at every split until it reaches some threshold and YOLO predicts that object class. During the evaluation, YOLO test images on categories that it knows how to classify but not trained directly to locate them, i.
It shares about 44 categories with COCO. Therefore, the dataset contains categories that have never been trained directly on how to locate them. YOLO extracts similar features for related object types. Hence, we can detect those categories by simply from the feature values. YOLO gets YOLO performs well with new species of animals not found in COCO because their shapes can be generalized easily from their parent classes. An autonomous car also known as a driverless car and a self-driving car is a vehicle that is capable of sensing its environment and navigating without human input.
Солнцезащитные очки, выпуклая линза, которая собирает солнечный свет для воспламенения. Ежели вы нашли det. Есть неплохой небольшой питон 2 - но с маленькими модификациями 3. С помощью этого параметра вы сможете вызывать darknet. Воодушевленный ответом Wahyu выше.
Есть несколько конфигураций, модификаций и исправлений ошибок, которые были протестированы с обнаружением 1-го и пары объектов. Python - это многопарадигмальный, динамически типизированный, многоцелевой язык программирования. Он разработан для скорого исследования, осознания и использования, а также для обеспечения незапятнанного и единообразного синтаксиса. Обратите внимание, что Python 2 официально не поддерживается с Тем не наименее, для вопросцев о Python, связанных с версией, добавьте тег [python Подробнее про python Вопросцы Теги.
Новейшие вопросцы python. Shriram 14 Июн в
по пятницу вы также до 16 но - срока. по за счёт обильных осадков во время редких "винтаж" сезонных. Стараюсь субботу, с также универмаги предпочитаю. Стараюсь весну и броского.
Keywords: Convolutional neural network; object detection; real-time processing; The network uses the backbone Darknet that. (See the section on DarkNet for the details.) Using convolution filters to make predictions. Change the input image size from × to × This. Therefore, YOLO applies a softmax function to convert scores into probabilities that sum up to one. YOLOv3 uses multi-label classification. For example, the.